3.23. Although we don't know the internals of the implementation of MPI Reduce, we might guess that it uses a structure similar to the binary tree we discussed. If this is the case, we would expect that its run-time would grow roughly at the rate of log2.p/, since there are roughly log2.p/ levels in the tree. (Here, p D comm sz.) Since the run-time of the serial trapezoidal rule is roughly proportional
to n, the number of trapezoids, and the parallel trapezoidal rule simply applies the serial rule to n=p trapezoids on each process, with our assumption about MPI Reduce, we get a formula for the overall run-time of the parallel trapezoidal rule that looks like

for some constants a and b.
a. Use the formula, the times you've taken in Exercise 3.22, and your favorite program for doing mathematical calculations (e.g., MATLABR ) to get aleast-squares estimate of the values of a and b.
b. Comment on the quality of the predicted run-times using the formula and the values for a and b computed in part (a).
 
 
View Solution
 
 
 
<< Back Next >>